Constraining reionization with the global 21cm signal and kSZ

Joëlle-Marie Bégin

In collaboration with Adrian Liu and Adelie Gorce

Overview

- The global 21cm signal and kinetic Sunyaev Zeldovich effect are **complementary** probes of reionization.
- The **Karhunen-Loeve** basis highlights this complementarity.
- Working in this basis facilitates the **detection and removal of systematics.**

The ionization history

■ We have some bounds for its midpoint, end, and duration.

The ionization history

- We have some bounds for its midpoint, end, and duration.
- Few limits on precise shape.

Miranda et al, 2017

Monsalve et al, 2017

■ During reionization, the global signal closely tracks the ionization history

During reionization, the global signal closely tracks the ionization history

During reionization, the global signal closely tracks the ionization history

- During reionization, the global signal closely tracks the ionization history
- The global signal is **most sensitive to rapidly evolving reionization histories** due to spectrally smooth foregrounds

The kinetic Sunyaev-Zeldovich effect (kSZ)

 CMB photons scattering off of energetic electrons with bulk relative velocity

The kinetic Sunyaev-Zeldovich effect (kSZ)

■ CMB photons scattering off of energetic electrons with bulk relative velocity

Power spectrum
changes with
midpoint, duration,
morphology of
reionization

The kinetic Sunyaev-Zeldovich effect (kSZ)

■ CMB photons scattering off of energetic electrons with bulk relative velocity

- Power spectrum
 changes with
 midpoint, duration,
 morphology of
 reionization
- Sensitive to extended ionization histories.

The global signal is sensitive to rapidly evolving ionization histories, the kSZ to extended ionization histories.

- A transformation whose eigenvalues represent the ratio of two signals.
- Familiar example: signal-to-noise analysis and data compression.

- A transformation whose eigenvalues represent the ratio of two signals.
- Familiar example: signal-to-noise analysis and data compression.

- A transformation whose eigenvalues represent the ratio of two signals.
- Familiar example: signal-to-noise analysis and data compression.

- A transformation whose eigenvalues represent the ratio of two signals.
- Familiar example: signal-to-noise analysis and data compression.

■ In our case: kSZ-to-21cm analysis

■ In our case: kSZ-to-21cm analysis

Tegmark, Taylor & Heavens (1996)

Tegmark, Taylor & Heavens (1996)

Begin, Liu & Gorce (in prep)

Tegmark, Taylor & Heavens (1996)

Begin, Liu & Gorce (in prep)

Tegmark, Taylor & Heavens (1996)

Begin, Liu & Gorce (in prep)

Overlap modes

- Some modes are well measured by both signals
- We can use these common modes to perform consistency checks, allowing us detect and project out systematics

Model foregrounds as power law

$$T_{fg} = A \left(\frac{\nu}{\nu_{\star}}\right)^{\alpha}$$

Add to ionization history, do KL transform

$$KL(x_{HI} + x_{fg})$$

Model foregrounds as power law

$$T_{fg} = A \left(\frac{\nu}{\nu_{\star}}\right)^{\alpha}$$

Add to ionization history, do KL transform

$$KL(x_{HI} + x_{fg})$$

17.5 15.0 12.5 10.0 12.5 10.0 7.5 5.0 2.5 2.5 2.5

Model foregrounds as power law

$$T_{fg} = A \left(\frac{\nu}{\nu_{\star}}\right)^{\alpha}$$

Add to ionization history, do KL transform

$$KL(x_{HI} + x_{fg})$$

The Linear Matched Filter

Used to detect presence of template shape in data

$$\nu = \sqrt{\frac{(\mathbf{s}^T \mathbf{\Sigma}^{-1} \mathbf{z})^2}{\mathbf{s}^T \mathbf{\Sigma} \mathbf{s}}}$$

The Linear Matched Filter

■ Used to detect presence of template shape in data

The Linear Matched Filter

■ Used to detect presence of template shape in data

The Linear Matched Filter

■ Used to detect presence of template shape in data

The Linear Matched Filter

Used to detect presence of template shape in data

Cable reflection and foreground systematics

CMB and tSZxCIB residuals

CMB and tSZxCIB residuals

Conclusions

- The Karhunen-Loève basis highlights the complementary relation between the kSZ and 21cm global signal.
- By performing statistical tests on modes that are well measured by both probes, we can detect to the presence of systematics.
- This is a general framework that can be **generalized to any two probes**.

BACKUP SLIDES

■ We use the Fisher information matrix formalism

$$\mathbf{F}_{\alpha\beta}^{21} = \sum_{i} \frac{\partial T_{21}(z_i)}{\partial x_{HI}(z_\alpha)} \mathbf{\Pi}_{\alpha\beta} \frac{\partial T_{21}(z_i)}{\partial x_{HI}(z_\beta)}$$

■ We use the Fisher information matrix formalism

$$\mathbf{F}_{lphaeta}^{21} = \sum_{i} rac{\partial T_{21}(z_i)}{\partial x_{HI}(z_lpha)} \mathbf{\Pi}_{lphaeta} rac{\partial T_{21}(z_i)}{\partial x_{HI}(z_eta)}$$

■ We use the Fisher information matrix formalism

■ We use the Fisher information matrix formalism

■ We use the Fisher information matrix formalism

- We use the Fisher information matrix formalism
- Entries of Fisher matrix tell us how good 21cm signal is at constraining the ionized fraction in a redshift bin

■ We use the Fisher information matrix formalism

■ We use the Fisher information matrix formalism

$$(\mathbf{C}_{\alpha\beta}^{21})^{-1} \approx \mathbf{F}_{\alpha\beta}^{21} = \sum_{i} \frac{\partial T_{21}(z_i)}{\partial x_{HI}(z_\alpha)} \mathbf{\Pi}_{\alpha\beta} \frac{\partial T_{21}(z_i)}{\partial x_{HI}(z_\beta)}$$

$$(\mathbf{C}_{\alpha\beta}^{21})^{-1} \approx \mathbf{F}_{\alpha\beta}^{21} = \sum_{i} \frac{\partial T_{21}(z_{i})}{\partial x_{HI}(z_{\alpha})} \mathbf{\Pi}_{\alpha\beta} \frac{\partial T_{21}(z_{i})}{\partial x_{HI}(z_{\beta})}$$

Approximated as analytic
$$\delta T_b \approx 27 x_{HI} \left(\frac{1+z}{10}\right)^{1/2} \, \mathrm{mK}$$

$$(\mathbf{C}_{\alpha\beta}^{kSZ})^{-1} \approx \mathbf{F}_{\alpha\beta}^{kSZ} = \sum_{i} \frac{\partial C_{\ell}(\ell_{i})}{\partial x_{HI}(z_{\alpha})} \mathbf{\Pi}_{\alpha\beta} \frac{\partial C_{\ell}(\ell_{i})}{\partial x_{HI}(z_{\beta})}$$

$$egin{aligned} \overline{\mathbf{C}}_{kSZ} &= \mathbf{\Psi}^T \mathbf{L}_{21}^{-1} \mathbf{C}_{kSZ} \mathbf{L}_{21}^{-T} \mathbf{\Psi} = \mathbf{\Psi}^T \mathbf{G} \mathbf{\Psi} = \mathbf{\Lambda} \ \overline{\mathbf{C}}_{21} &= \mathbf{\Psi}^T \mathbf{L}_{21}^{-1} \mathbf{C}_{21} \mathbf{L}_{21}^{-T} \mathbf{\Psi} = \mathbf{\Psi}^T \mathbf{\Psi} = \mathbf{I} \end{aligned}$$

$$\overline{\mathbf{C}}_{21} = \mathbf{\Psi}^T \mathbf{L}_{21}^{-1} \mathbf{C}_{21} \mathbf{L}_{21}^{-T} \mathbf{\Psi} = \mathbf{\Psi}^T \mathbf{\Psi} = \mathbf{I}$$

$$\mathbf{L}_{21}^{-1}\mathbf{C}_{kSZ}\mathbf{L}_{21}^T\mathbf{v} = \lambda \mathbf{L}_{21}^T\mathbf{v}.$$

 $\mathbf{C}_{kSZ}\mathbf{v} = \lambda \mathbf{C}_{21}\mathbf{v}.$