
Constraining reionization with the 
global 21cm signal and kSZ

Joëlle-Marie Bégin
In collaboration with Adrian Liu 

and Adelie Gorce



Overview

■ The global 21cm signal and kinetic Sunyaev Zeldovich effect are complementary 
probes of reionization. 

■ The Karhunen-Loeve basis highlights this complementarity. 

■ Working in this basis facilitates the detection and removal of systematics.
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■ We have some bounds for its midpoint, end, and duration.
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■ We have some bounds for its midpoint, end, and duration.

■ Few limits on precise shape.
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The global 21cm signal

■ During reionization, the global signal closely tracks the ionization history



The global 21cm signal

■ During reionization, the global signal closely tracks the ionization history



The global 21cm signal

Fraction of neutral 
hydrogen

■ During reionization, the global signal closely tracks the ionization history



The global 21cm signal

Fraction of neutral 
hydrogen

■ During reionization, the global signal closely tracks the ionization history

■ The global signal is most sensitive to rapidly evolving reionization histories 
due to spectrally smooth foregrounds
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The kinetic Sunyaev-Zeldovich effect (kSZ)

■ CMB photons scattering off of energetic 
electrons with bulk relative velocity 

■ Power spectrum 
changes with 
midpoint, duration, 
morphology of 
reionization

■ Sensitive to extended 
ionization histories.

Gorce et al, 2020
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The global signal is sensitive to 
rapidly evolving  ionization 

histories, the kSZ to extended  
ionization histories.
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The Karhunen-Loeve (KL) Transform

■ A transformation whose eigenvalues represent the ratio of two signals. 

■ Familiar example: signal-to-noise analysis and data compression.

Signal 
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The Karhunen-Loeve (KL) Transform

■ In our case: kSZ-to-21cm analysis
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21cm-to-kSZ eigenvalues and modes
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21cm-to-kSZ eigenvalues and modes
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Overlap modes

■ Some modes are well measured by both signals

■ We can use these common modes to perform 
consistency checks, allowing us detect and 
project out systematics
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How do systematics perturb data in the KL basis?

■ Model foregrounds as 
power law

■ Add to ionization 
history, do KL transform

A = 20 m
K

A = 10 mK

A = 2 mK

No systematics,
e.g. measured by 
kSZ
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The Linear Matched Filter

■ Used to detect presence of template shape in data

(Measurement of ionization history by kSZ) - (measurement by 21cm)

Systematic shape template

Noise covariance

Number of sigma with 
which we claim detection 
of systematic in data



Cable reflection and foreground systematics
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CMB and tSZxCIB residuals
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Conclusions

■ The Karhunen-Loѐve basis highlights the complementary relation between 
the kSZ and 21cm global signal.

■ By performing statistical tests on modes that are well measured by both 
probes, we can detect to the presence of systematics.

■ This is a general framework that can be generalized to any two probes.



BACKUP SLIDES



Simulating covariances: global 21cm signal

■ We use the Fisher information matrix formalism



Simulating covariances: global 21cm signal

■ We use the Fisher information matrix formalism

Global signal temperature



Simulating covariances: global 21cm signal

■ We use the Fisher information matrix formalism

Global signal temperature

Neutral fraction



Simulating covariances: global 21cm signal

■ We use the Fisher information matrix formalism

Global signal temperature

Neutral fraction

Derivative of global signal with respect to 
neutral fraction



Simulating covariances: global 21cm signal

■ We use the Fisher information matrix formalism

Global signal temperature

Neutral fraction

Derivative of global signal with respect to 
neutral fraction

Noise covariance



Simulating covariances: global 21cm signal
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Approximated as analytic

Instrument noise + foregrounds
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