



Observing the low-frequency sky with ALBATROS Joëlle-Marie Bégin



#### **ALBATROS** Overview

- The Array of Long Baseline Antennas for Taking Radio Observations from the Sub-antarctic/Seventy-ninth parallel
- Goal: map the sky below 30 MHz
- Remote locations to minimize RFI
- Autonomous antenna stations with ~10 km baselines





#### **ALBATROS** Overview

- 21cm emissions from the Cosmic Dark Ages are redshifted to <30 MHz
- Ultimate goal: map 21cm brightness temperature fluctuations from the Dark Ages. First step: understand foregrounds.



#### Our current understanding of the sub 40 MHz sky

Data at low frequencies is both sparse and low-resolution





# Our current understanding of the sub 40 MHz sky

Data at low frequencies is both sparse and low-resolution







# Simplified ALBATROS block diagram



# Simplified ALBATROS block diagram



#### Data storage

■ Store 1 bit of baseband data for ~1 year of autonomous operation



■ Hybrid solar & methanol fuel cell





Hybrid solar & methanol fuel cell



SNAP Box (backend)



■ Hybrid solar & methanol fuel cell







■ Hybrid solar & methanol fuel cell







## Front end amplifier and antenna response

■ Currently using LWA systems: large impedance mismatch at low frequencies causes a drop in gain



Chiang et al 2020

#### Front end amplifier and antenna response

■ Currently using LWA systems: large impedance mismatch at low frequencies causes a drop in gain



Chiang et al 2020

#### Front end amplifier and antenna response

■ Currently using LWA systems: large impedance mismatch at low frequencies causes a drop in gain



Chiang et al 2020 Tristan Menard MSc Thesis

#### New antenna & front-end electronics (FEE)

- Inverted-V dipole antenna
  - Easily scalable to modify resonant frequency
- High-impedance differential low-noise amplifier





# First tests of performance

Spectrum, S21, and noise of latest FEE revision



## First tests of performance

#### Spectrum, S21, and noise of latest FEE revision





Comparison of new FEE and LWA FEE autospectra at Uapishka Station, taken on LWA antenna

## First tests of performance

#### Spectrum, S21, and noise of latest FEE revision





Comparison of new FEE and LWA FEE autospectra at Uapishka Station, taken on LWA antenna

## **Summary**

- ALBATROS status:
  - First test of full system still running at Uapishka Station
  - Summer 2022: first installation on site at McGill Arctic Research Station + sending new parts to Marion
- New antenna & amplifier development:
  - Continued development to improve noise properties and response
  - Will be tested in radio-quiet sites in the coming months
- ALBATROS maps will provide a new view of the low frequency sky

